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PORTFOLIO &  
RISK ANALYTICS 
OVERVIEW
Bloomberg’s Portfolio and Risk Analytics solution, available via the Bloomberg Professional® service, offers a comprehensive set 
of customizable tools for the desktop. In today’s market, your company’s performance depends on the ability to understand and 
manage risk and consistently out-think the market. Bloomberg supports portfolio managers, risk managers and senior management 
with a series of new and enhanced tools to systematically analyze and track portfolio risk, and to construct and rebalance portfolios 
that optimally achieve investment objectives and criteria.

PORTFOLIO VALUE-AT-RISK
The new VAR tab is a part of Bloomberg’s suite of portfolio 
and risk analytics provided by PORT <GO>. It enables risk 
managers and portfolio managers to analyze the tail risk 
of their portfolios using the latest risk modeling techniques.

This document describes the new methodology for portfolio 
value-at-risk (VaR) computation provided by Bloomberg  
Portfolio and Risk Analytics. Three types of VaR are provided:

    1. Parametric VaR
    2. Historical VaR
    3. Monte Carlo VaR

The new VaR methodology utilizes the factor structure  
provided by the Bloomberg factor models, in a way that 
makes the VaR consistent with portfolio tracking error and 
volatility that are computed using the same factor models.  
For Historical and Monte Carlo VaR an array of valuation 
choices are offered, ranging from linear pricing using the 
Bloomberg factor models to Stress Matrix Pricing (SMP)  
and full valuation. In the remainder of this document we  
describe the different components of Bloomberg VaR  
calculation, namely, the Bloomberg factor models, security 
valuation methods, and details of Parametric, Historical and 
Monte Carlo VaR calculation.

BLOOMBERG FUNDAMENTAL FACTOR MODELS
Reliable estimation of portfolio volatility is a key first step 
towards computing reliable VaR estimates. Bloomberg uses 
linear factor models to estimate portfolio volatility.

Factor models have become an indispensable tool for modern 
portfolio management as well as risk management. They 
provide greater understanding of sources of portfolio risk, 
and the ability to attribute portfolio performance, to forecast 
both absolute risk and benchmark-relative risk and to improve 
portfolio construction. Recent market volatility highlights 
the importance of controlling unwanted factor exposures in 
portfolios. While factor models have been in use for at least 
two decades, the quantitative equity hedge fund meltdown 

of August 2007, the market collapse in the wake of the 
Lehman Brothers bankruptcy, and extreme volatility of several 
factors since then have attracted the attention of traditional and 
quantitative portfolio managers alike and have dramatically 
increased client interest in factor models.

Factor models are based on the basic principle that security 
returns are driven by a set of common factors. Therefore, 
portfolio risk depends on volatility and correlation of these 
factors and on the amount of portfolio exposure to individual 
factors. Additionally, there are risks not captured by the common 
factors; factor models help estimate these “non-factor” risks 
as well.

Bloomberg’s approach to constructing risk factor models 
uses a combination of explicit and implicit factors. An implicit 
or fundamental factor model is constructed by defining security 
exposures to each factor and then imputing factor returns 
from a regression of security returns on the exposures. 
While this class of models has several advantages over the 
alternatives, we chose this approach primarily due to its 
better interpretability by the user. It gives greater insight into 
the portfolio risk sources and leads to intuitive action items. 
Additionally, explicit factors are used when the impact of 
certain observable factors on security returns is known. For 
example, FX rates are used as explicit factors in equity factor 
models, and changes in the curve are used in fixed income 
factor models. Factor exposures for explicit factors are 
analytically computed. The single-period return of the 
th security in the th time period is modeled by Bloomberg 

factor models as

where  is the exposure of the th security to the th factor 
at time   is the th factor return at time ,  is the number of 
factors, and  is the non-factor return of the th security at 
time . 
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The model assumes that the factor returns are uncorrelated 
with the non-factor returns and that the non-factor returns 
have sparse correlations. For example, for equities we assume 
that non-factor returns are mutually uncorrelated except in cases 
of multiple share classes of the same company and ADR/GDRs. 

For certain credit instruments we assume that non-factor returns 
corresponding to different issuers are mutually uncorrelated. 
The number of factors and their definition depend on the 
particular factor model that is used. Bloomberg offers several 
fundamental factor models based on the asset class and 
region of asset coverage. Please see the model white papers 
for an in-depth description of individual factor models.

The factor model shown on the previous page for security 
returns may be written in matrix notation as

where  is the vector of  security excess returns at time , 
 is the  ×  matrix of factor exposures,  is the vector 

of  factor returns at time   is the vector of  non-factor 
returns at time .

From this model we can derive the asset return covariance 
matrix as

where  is the factor return covariance matrix, and  is the 
sparse matrix of non-specific returns.

The implicit factor returns at time  are estimated using weighted 
cross-sectional regression of the asset returns on factor  
exposures at time . The estimated factor returns are then used 
to estimate the factor covariance matrix , using exponential 
averaging and shrinkage. The choice of half-life for exponential 
averaging for factor variances is based on the specific factor 
model—please see documentation on the individual Bloomberg 
factor models. For example, Bloomberg uses a half-life of 26 
weeks for exponential averaging of variances and 52 weeks for 
correlations for equity models.

The volatility of a portfolio with weights specified by the vector 
can be computed using the above factor model as

Bloomberg factor models are used both for valuation and risk 
modeling as part of the VaR methodology, as explained in the 
following sections.

VALUATION METHODOLOGY
An integral part of VaR calculation is the valuation of each  
security in the portfolio and aggregation of returns across the 
portfolio to construct the entire return distribution. One of the four 
valuation methods described in the following is selected for each 
security based on the type of the security and user preferences. 
The choice of valuation method for a given security aims to 
achieve computational efficiency without sacrificing accuracy.

Linear Factor Model Pricing
The Bloomberg factor models described previously are used 
by this method to compute the return of a security, given factor 
returns and the non-factor return. This method is implicitly used 
for all securities in computing Parametric VaR, as explained 
in Section 4. This method is also used for Historical and Monte 
Carlo VaR for securities whose price is accurately modeled as 
a linear combination of (explicit or implicit) model factors. 
Examples of such securities are  equities and fixed income 
securities without strong convexity or optionality.

Each scenario in the computation of Historical and Monte 
Carlo VaR specifies a set of factor returns and non-factor 
returns, which are fed into the factor model to compute the 
corresponding security returns.

For securities with optionality, the Delta/Gamma or Duration/ 
Convexity approximation is used, which approximates the  
pricing function by the first-and-second-order terms in its Taylor 
expansion. Note that the presence of the second order (gamma 
or convexity) term makes this a non-linear approximation. But 
this non-linearity is converted to a linear operation on factors by 
defining market-wide factors that approximate the per-security 
non-linear terms. Consider the example of a vanilla equity option: 
the gamma term includes the squared return of the underlying 
asset, which we approximate by the “market-square” factor (see 
documentation of the Bloomberg factor models). The analogous 
factor in the case of fixed income securities is the convexity 
factor. This approximation linearizes the pricing function with 
respect to the factor returns and makes it suitable for Parametric 
VaR computation.

Delta/Gamma Pricing
Delta/Gamma or Duration/Convexity pricing is an available  
pricing method for securities with optionality in Historical and 
Monte Carlo VaR computation. This is similar to the Delta/
Gamma approximation described for linear factor model pricing 
with one exception: When computing VaR using historical to 
Monte Carlo simulations we have access to all the underlying 
factors for each scenario, which enables us to model the true 
non-linearity of the gamma term instead of using market-wide 
approximations. For example, in the case of equity options this 
method uses the squared return of the underlying stock for each 
scenario instead of the market square factor approximation. 
Exact modeling of the gamma term makes this pricing method 
more accurate than linear pricing for simulation-based VaR 
computation. However, since it ignores higher-order Greeks, 
this method may not be suitable for options with significant 
non-linearities in the pricing function.

Stress Matrix Pricing
The Stress Matrix Pricing (SMP) approach offers a compromise 
between the accuracy we achieve using Full Valuation and the 
speed of Delta/Gamma pricing. It is available in Historical and 
Monte Carlo VaR computation for derivative securities, which 
include equity options and interest rate and credit products with 
embedded options.
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The SMP approach to pricing is as follows. To avoid the 
computational effort required to fully value every scenario, we 
first store the difference between the true price computed using 
full valuation and the Delta/Gamma price for a much smaller set 
of scenarios (the “stress matrix”). We then compute the Delta/
Gamma price for each scenario in a simulation set and apply a 
non linearity correction that is interpolated from the stress matrix. 
This approach gives us the exact price if the scenario exactly 
matches one of the stored scenarios, but may result in an 
interpolation error for other scenarios.

For a detailed explanation of the SMP methodology, please see 
Bloomberg’s Stress Matrix pricing white paper.

Full Valuation
For some securities with highly non-linear pricing functions, such 
as certain exotic derivatives and short time-to-maturity options, 
we find that the Delta/Gamma Pricing and SMP approaches do 
not accurately capture the true distribution of security returns, 
given a distribution of the underlying risk factors. In such cases 
we offer the flexibility to use full pricing of the security in all 
scenarios, when Historical or Monte Carlo VaR is selected.

While this method provides the most accurate return distribution 
given a distribution of factors, it is also the most computationally 
expensive, and will be used only when the cost in accuracy is 
too great for the other methods.

VAR COMPUTATION
Bloomberg offers the following three choices for VaR  
computation. Table 1 on the next page summarizes the 
parameters and techniques used in computing the different 
VaR estimates.

Parametric VaR
The Parametric VaR methodology follows the traditional  
approach of assuming a jointly normal distribution among all 
assets in the portfolio to compute a VaR estimate analytically. 
It makes use of the Bloomberg factor models that provide 
the asset covariance matrix in terms of the factor covariance 
matrix, factor exposures and non-factor variances, and models 
the factor returns and non-factor returns as jointly normal 
random variables. These assumptions, coupled with the use 
of linear pricing (see Section 3), imply a normal distribution 
for the portfolio return. The standard deviation of the normally 
distributed portfolio return is the portfolio volatility, which is 
computed as shown in Section 2.

The advantages of the parametric approach to computing 
VaR are very high speed of computation and compatibility 
with traditional reporting systems that include this estimate.

However, as is increasingly recognized by risk practitioners, 
realized distributions of portfolio returns are significantly 
non-normal—they exhibit fat-tailed behavior, which means that 
extreme moves in portfolio return occur with a much larger 
probability than that predicted by a normal distribution.  
Therefore, Parametric VaR tends to underestimate VaR at 

very high confidence levels. Parametric VaR also imposes 
the restriction of linear pricing, which is not suitable for highly 
non-linear securities. Historical and Monte Carlo VaR estimates 
described below aim to overcome these drawbacks of Parametric 
VaR at the expense of a higher computational cost.

Historical VaR
This VaR methodology models fat-tailed behavior of returns 
by using the distribution of realized (historical) factor returns  
instead of making the assumption that factor returns are 
normally distributed. The joint distribution of factor returns is 
represented by a panel of historical daily returns over multiple 
years of recorded factor history, which we call historical  
simulations. We simulate the corresponding non-factor 
returns by drawing from (fat-tailed) Student’s  distributions 
whose standard deviations are the current estimates of  
security non-factor volatilities.

We use the factor returns and non-factor returns for each  
historical scenario and the current factor exposures to  
compute the corresponding returns of all securities using one 
of the pricing methods described in Section 3, and aggregate 
the returns across the portfolio. This yields a historical sequence  
of portfolio returns given the current portfolio holdings. Historical 
VaR is then computed as the desired percentile of the portfolio 
return distribution, e.g., the 5th percentile portfolio return  
represents the Historical VaR at the 95% confidence level. 
Since the return distribution is given by historical returns, the 
choice of the length of the historical period is a critical input for 
Historical VaR.

In contrast to Parametric VaR, Historical VaR captures the 
fat-tailed behavior of portfolio returns and offers the flexibility of 
using multiple valuation techniques described in Section 3. The 
main advantage of Historical VaR over Monte Carlo VaR is the 
fact that it makes no assumptions on the joint return distribution 
other than that the future return distribution is the same as the 
historical distribution. This often makes Historical VaR easier 
to interpret and explain. On the other hand, one may question 
the validity of using the historical distribution for the distribution 
of future returns, since current market conditions may be quite 
different from those experienced in the past. Historical VaR is 
also limited by the length of historical data chosen for historical 
simulations; a small number of historical scenarios would lead 
to a lower statistical confidence in the VaR estimate.
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PARAMETRIC HISTORICAL MONTE CARLO

Number of Simulations N/A Historical 1 year: 250 
Historical 2 year: 500 
Historical 3 year: 750

10,000

Distributional Assumption Normal Empirical Student’s  Marginal

Time Series Weights Exponentially
Weighted

Equally Weighted Exponentially Weighted 

Half-Life 26 Weeks for Volatility 
and 52 weeks for 
Correlations

None 26 Weeks for Volatility and 
52 Weeks for Correlations

Time Horizon Projection Daily VaR is Scaled 
by the Square Root  
of the Horizon

Daily VaR is Scaled by the  
Square Root of the Horizon

Daily VaR is Scaled by the 
Square Root of the Horizon

Simulated  
Non-factor Risk

N/A Non-factor Volatility From the  
Multi-factor Risk Models Are Used 
as the Basis to Simulate 
Non-factor Returns (Student’s  
Assumption for Non-factor Risk)

Non-factor Volatility From  
the Multi-factor Risk Models  
Are Used as the Basis to 
Simulate Non-factor Returns 
(Student’s  Assumption of 
Non-factor Risk)

Monte Carlo VaR
The Monte Carlo approach to VaR estimation is to estimate 
the joint distribution of future factor and non-factor returns and 
to draw a large number of random simulations from this joint 
distribution to create Monte Carlo scenarios. This enables us 
to use a forward-looking distribution of the market rather than  
a backward-looking distribution that historical simulations  
represent. It also increases the statistical accuracy of VaR  
estimation compared with Historical VaR, due to the use of 
a very large number of scenarios.

In order to provide us with added flexibility when formulating 
the multivariate distribution required in generating VaR, we 
separate the modeling of the marginal distribution of each risk 
factor from that of the dependence structure across factors. 
Bloomberg uses fat-tailed marginal distributions to model the 
distribution of each individual factor return, and a fat-tailed 
copula to model the inter dependence of factors, thus going 
beyond the assumption of jointly normal factor returns. The 
marginal distributions of individual factors are modeled from 
the family of Student’s  distributions. The degrees of freedom 
parameter of the  distribution, which determines the thickness 
of its tails, is calibrated to historical factor return data for each 
factor. Bloomberg uses a normal or a Student’s  copula to 
model the dependence structure between factors.

One of the advantages of using copulas is that they isolate  
the dependence structure from the structure of the marginal 
distributions. This separation allows us flexibility in  
independently choosing the most appropriate models for the 
marginal distributions of individual factors and the copula for 
their interdependence. Bloomberg’s implementation of Monte 
Carlo VaR follows the steps shown above.

1. ��Estimate the marginal distributions of individual factors: 
To capture the fat-tailed behavior of the market we use the 
Student’s  distribution with appropriate degrees of freedom 
as a parametric model for the marginal distribution of each 
risk factor. The family of  distributions generalizes the normal 
distribution, and includes the normal distribution as a special 
case. We fit a separate  distribution to each factor in the risk 
model. The degrees of freedom of the Student’s -distribution, 
which determines the fatness of its tails, is estimated using 
the maximum-likelihood method, and the variance is estimated 
using exponentially weighted moving averaging (EWMA)  
on historical factor data. See documentation of individual  
Bloomberg factor models for details on the estimation of  
factor covariance matrix.

Table 1: Summary of VaR methodologies
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2. �Estimate the factor copula: We model the inter dependence 
structure of the joint distribution of factors using a parametric 
copula distribution. Bloomberg currently uses a  copula  
with six degrees of freedom, and will provide a choice to  
the user in the future to select from a normal or a  copula. 
The copula is parameterized by its correlation matrix, which 
we estimate using the historical risk factor data. We use  
exponential weighting with a half-life of 52 weeks and  
shrinkage to estimate the copula correlation matrix. The 
copula correlation matrix provides the basis for the scenario 
generation of joint returns of multiple risk factors.

3. �Generate Monte Carlo simulations: Bloomberg draws 
10,000 random simulations of factor returns and non-factor 
returns from the joint distribution estimated as described 
above. This is done in two steps: We first sample from the 
copula distribution to obtain a set of 10,000 scenarios that 
determine the inter dependence structure of factor and 
non-factor returns. We then transform these scenarios to 
a panel of joint factor and non-factor returns using the 
marginal distributions estimated in Step 1.

Once the panel of Monte Carlo scenarios is generated in this 
manner, the computation of Monte Carlo VaR follows  
the same method as Historical VaR: each security is priced 
using the most appropriate valuation method from Section C, 
security returns are aggregated to form scenarios of  
portfolio return using the current portfolio holdings, and 
Monte Carlo VaR is computed as the desired percentile 
of the Monte Carlo distribution of portfolio return.
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